Search results for "Near field optics"

showing 3 items of 3 documents

Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches

2006

International audience; In coherent homodyne apertureless scanning near-field optical microscopy (ASNOM) the background field cannot be fully suppressed because of the interference between the different collected fields, making the images difficult to interpret. We show that implementing the heterodyne version of ASNOM allows one to overcome this issue. We present a comparison between homodyne and heterodyne ASNOM through near-field analysis of gold nanowells, integrated waveguides, and a single evanescent wave generated by total internal reflection. The heterodyne approach allows for the control of the interferometric effect with the background light. In particular, the undesirable backgro…

HeterodyneImage formationPhase (waves)Near and far fieldOptical fields02 engineering and technologyInterference (wave propagation)Total internal reflection01 natural sciencesDestructive interference010309 opticsOptics0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPhysicsTotal internal reflectionNear field opticsbusiness.industryTapered fibersNear-field opticsScanning microscopyStatistical and Nonlinear Physics021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsInterferometryImage formation theory[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusinessScanning electron microscopy
researchProduct

Time-resolved FDTD and experimental FTIR study of gold micropatch arrays for wavelength-selective mid-infrared optical coupling

2021

The work was partially supported by Sweden's innovation agency Vinnova (Large area CVD graphene-based sensors/IR-photodetectors 2020-00797) and EU CAMART2 project (European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No.739508). TY acknowledges European Regional Development Fund Project No. 1.1.1.2/VIAA/4/20/740.

Materials sciencenano fabricationInfraredFDTDMathematicsofComputing_GENERALInfrared spectroscopyPhotodetectorTP1-118502 engineering and technologyFar field opticsInfrared sensing7. Clean energy01 natural sciencesBiochemistrynear field opticsAnalytical Chemistry010309 opticselectron beam lithography0103 physical sciencesTransmittanceArray data structureElectrical and Electronic EngineeringInstrumentationinfrared sensingNear field opticsbusiness.industryChemical technologyCommunicationNear-field opticsFinite-difference time-domain methodmetal micropatch arrays021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Opticsfar field opticsWavelengthFTIR:NATURAL SCIENCES [Research Subject Categories]OptoelectronicsElectron beam lithography0210 nano-technologybusinessMetal micropatch arraysNano fabrication
researchProduct

On chip optical nanotweezing for dielectric particles manipulation

2014

On chips optical nanocavities have become useful tools for trapping and manipulation of colloidal objects. In this thesis we study the nanocavities as building blocks for optical forces, trapping and handling of particles. Proof of concept of trapping dielectric microspheres appears as the starting point of the development of lab on chip. In the first chapter we go through the literature of optical forces in free space and integrated optics. The second chapter presents the experimental tools for the characterization of nanocavities and the set-up developed to perform optical measurements with the colloidal particles. The third chapter describes the proof-of-concept trapping of polystyrene p…

Optical assembly[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Near field opticsPiégeage optiqueParticlesAssemblage optiqueParticulesChamp proche optiqueOptical trapping[SPI.TRON] Engineering Sciences [physics]/Electronics[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]NanocavityNanocavité
researchProduct